

Picosecond Characterization of Bent Coplanar Waveguides

Sotiris Alexandrou, *Student Member, IEEE*, Roman Sobolewski, Hiroyuki Nakano, Bradford C. Tousley, *Student Member, IEEE*, and Thomas Y. Hsiang, *Senior Member, IEEE*

Abstract—Picosecond electrical pulse propagation on Au coplanar waveguides fabricated on semi-insulating GaAs substrates has been analyzed. Propagation speed and signal distortion between the straight and bent transmission lines of different geometries were measured and compared with the aid of an electrooptic sampling system. The results indicate that the bent coplanar waveguides are capable of linking electronic devices operating in the sub-THz frequency regime. It is also found that smoothing of the bends can considerably improve high-frequency performance of these lines.

I. INTRODUCTION

MANY of today's experimental electronic devices can successfully operate at frequencies far above 100 GHz. However, at these frequencies, characteristics of the interconnecting medium often become the limiting factor in the overall performance of high-speed circuits, restricting their maximum operating bandwidth. Speed limitations imposed by the interconnects will be even more severe in future high-speed, very large scale integrated (VLSI) circuitry, where the system complexity will force the designers to widely implement bent interconnects.

The studies of straight coplanar transmission line structures, suitable for high-speed interconnects, have been the subject of intensive research in the past [1]–[7]. Both room temperature [1]–[4] and superconducting (low- T_c) [5] and high- T_c [6], [7] lines have been investigated. On the other hand, the previous studies of bent coplanar transmission lines were primarily limited to the low frequency regime, where the bends were treated as point discontinuities [8].

The aim of this letter is to present the first sub-THz, time-domain characterization of bent transmission lines. For our studies we selected the coplanar waveguide (CPW), because it is a planar structure with comparatively low

Manuscript received April 24, 1991. This work was supported in part by the Laser Fusion Feasibility Project at the Laboratory for Laser Energetics, which has the following sponsors: Empire State Electric Energy Research Corporation, New York State Energy Research and Development Authority, Ontario Hydro, and the University of Rochester.

S. Alexandrou, B. C. Tousley, and T. Y. Hsiang are with the Laboratory for Laser Energetics and Department of Electrical Engineering, University of Rochester, Rochester, NY 14623-1299.

R. Sobolewski is with the Laboratory for Laser Energetics and Department of Electrical Engineering, University of Rochester and the Institute of Physics, Polish Academy of Sciences, PL-02668 Warsaw, Poland.

H. Nakano was with the Laboratory for Laser Energetics and Department of Electrical Engineering, University of Rochester. He is now with the Sony Corporation Research Center, 174 Fujitsuka-cho, Hodogaya-ku, Yokohama 240, Japan.

IEEE Log Number 9102352.

dispersion, low inductance, and low substrate sensitivity. Thus, it can be successfully implemented in a high frequency regime [9]. We show that at sub-THz frequencies, bends in the CPW cannot be treated as point discontinuities and signal propagation along the bend must be included in the analysis. Nevertheless, we demonstrate that bent CPW's, especially those with curved or chamfered bends, can sustain low distortion propagation up to about 100 GHz.

II. EXPERIMENT

The CPW's studied in this work are schematically shown in Fig. 1. In each case, the transmission line formed a meander-like structure in order to measure accumulative distortion of the signal as it propagated along many bends. The CPW's were made of Au on undoped (semi-insulated) 500- μ m-thick GaAs substrates, using a standard lift-off technique. The metal lines were 50 μ m wide and 250 nm thick. The line separation was also 50 μ m. Seven bent CPW's with different degrees of bend smoothing were fabricated in the same run. Each CPW was about 10 mm long and incorporated 20 bends over this distance, as well as the photoconductive switch (see Fig. 1). For comparison, a straight CPW of the same dimensions was also fabricated and tested. Fig. 1 presents only the extreme cases and shows the right-angle-bent line (#1), and the lines with the bends smoothed by chamfering (#3) or curving (#6).

The measurements were performed with the aid of an electrooptic sampling system, similar to that described in [10]. The CPW's were biased with a 10-V peak-to-peak square wave at a frequency of 3.5 MHz, and terminated by a 50 Ω load. A colliding pulse mode-locked, dye laser was used to provide two trains of \sim 100 fs optical pulses ($\lambda = 620$ nm) at 100 MHz repetition rate. The first train of pulses (excitation train) was directed, via a short piece of an optical fiber, to the photoconductive switch (see Fig. 1) and used to launch a step-like electrical transient in the CPW. The implementation of the fiber enabled us to speed up the beam alignment procedure and substantially improved reproducibility of the measured electrical transients. The second (probing) beam was fed to a small, movable electrooptic LiTaO₃ crystal (so-called "finger tip"), which was used to probe propagating electrical waveforms at different points along the transmission line (for more details see [10]).

III. RESULTS

Fig. 2 shows the measured step-like electrical transients as they propagate along the bent CPW #6. The waveform a

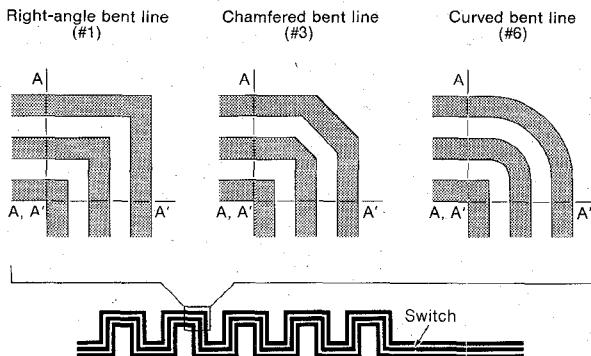


Fig. 1. Geometries of the bent CPW's studied in this work.

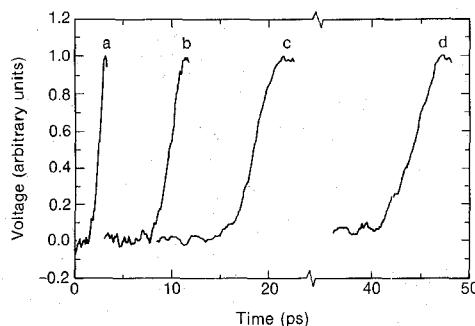


Fig. 2. Experimentally measured waveforms of the signal propagating on the curved-bent CPW (line #6). (a) Input transient. (b), (c), and (d). Propagated signals after 2, 4, and 10 bends, respectively. Waveforms are normalized with respect to the amplitude of the input pulse, in order to eliminate spurious, measurement-to-measurement fluctuations.

shows the input signal, while the waveforms b, c, and d show the same signal after it propagated through 2, 4, and 10 bends, respectively. Only the rising parts of the transients are shown for better clarity. The transients of the type presented in Fig. 2 enabled us to precisely determine both the signal arrival time (taken as the midpoint of the transient) and the 10%–90% rise time. As expected, the transient's rise time became longer as it propagated along the line. At the same time we did not observe any significant attenuation of our signals.

Propagation distance dependence on time for the transients propagated on several bent CPW's is presented in Fig. 3. We note that all the bent lines, as well as the straight CPW exhibit the same propagation velocity, v , which is practically constant over the entire distance. All of the data points (including the ones for the CPW's not presented in Fig. 3) lay on the same straight line, which corresponds to the value of v given by the quasi-static approximation:

$$v = \frac{c}{\sqrt{\frac{\epsilon_{\text{air}} + \epsilon_{\text{GaAs}}}{2}}} = 0.38c, \quad (1)$$

where $\epsilon_{\text{GaAs}} = 12.9$, $\epsilon_{\text{air}} = 1$, and c stands for the light velocity in vacuum. The above result is in an excellent agreement with [1], and suggests that, within our frequency range, the propagation velocity (or equivalently signal dispersion) depends very weakly on the number of bends, or their shape. The observed nonlinear variations in v for different CPW's were so small that they are not visible in

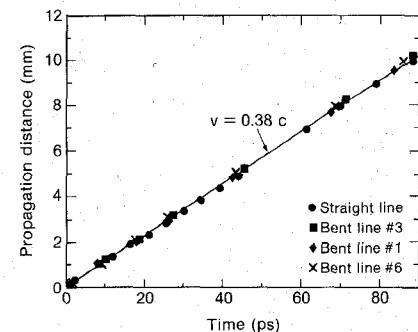


Fig. 3. Propagation distance versus time for the picosecond transients propagating on the straight and bent Au-on-GaAs CPW's. Straight line corresponds to the signal velocity within the quasistatic limit.

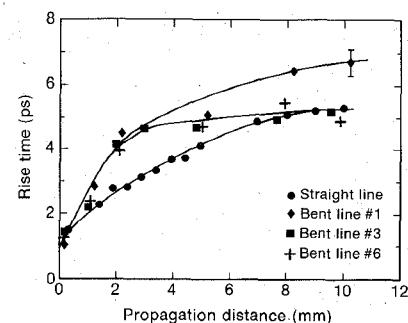


Fig. 4. Rise time versus the propagation distance comparison between the right-angle bent, smooth-bents, and straight CPW's. Error bar on the line #1 data point represents the maximal error of our measurements. Solid lines are only to guide the eye.

Fig. 3. Nevertheless, they indicate the presence of low level bend-induced dispersion in our lines. The bend-induced dispersion effects in coplanar transmission lines will be discussed in detail in our future publication.

It must be noted that the propagation distance plotted in Fig. 3 represents the full, physical length of the CPW, defined as the path along the center of the CPW signal line. This observation supports an intuitive expectation that at the sub-THz frequency range the effect of propagation of the electrical signal along the bend must be fully taken into account. Thus, at these frequencies, one cannot follow the analysis given by Simons *et al.* [8], where the bend (defined as the region of the CPW between A-A' and A'-A' cross sections in Fig. 1) was treated as the point discontinuity with a small, frequency dependent length correction.

The variation of the rise times as the transients traveled along the bent and straight CPW's is shown in Fig. 4. As expected, the rise times were shortest for the straight line and they initially increased linearly with the propagation distance (see also [1]). The bent CPW's exhibited considerably longer rise times in the initial propagation distance (0–3 mm), as compared to the straight line. We associate this effect with high-frequency reflections of the signal from the bends. For longer distances, the rise times continued to increase only for the right-angle-bent line (#1), while for the smooth-bent lines (#3) and (#6), the values of the rise times leveled off to ~ 5 ps after 4 mm of propagation. At this frequency

regime, the bent CPW's behaved almost like the straight line.

The observed difference in the rise times between the bent and the straight CPW's shows that the bend-induced distortion depends on the bend geometry and is significantly reduced for the smooth bends, which, apparently, cause less reflections. The distortion is also frequency dependent. However, for the curved- and chamfered-bent lines, tested by us, it practically vanishes for transients longer than 5 ps. These observations show that high frequency reflections from the bends are the leading mechanism of signal distortion in the bent CPW's operating at sub-THz frequency range.

IV. CONCLUSION

We have measured the propagation characteristics of the 20-bend CPW's over a distance of about 10 mm. Our results demonstrate that picosecond transients, having the bandwidth of the excess of 100 GHz, can propagate over a large number of bends with a limited signal distortion. We have found that the physical length of the bent CPW must be taken into account in order to correctly evaluate the signal propagation velocity. Finally, we showed that smoothing of the bends improves considerably the very high-frequency performance of the bent CPW's, since high-frequency reflections are limited in the smoothed bends.

V. ACKNOWLEDGMENT

The authors would like to thank William R. Donaldson, Lawrence Golob, John Variano, and Naoki Wakabayashi for their assistance.

REFERENCES

- [1] D. R. Dykaar, A. F. J. Levi, and M. Anzlowar, "Ultafast coplanar air-transmission lines," *Appl. Phys. Lett.*, vol. 57, pp. 1123-1125, Sept. 1990.
- [2] M. Y. Frankel, S. Gupta, J. A. Valdmanis, and G. A. Mourou, "Terahertz attenuation and dispersion of coplanar transmission lines," *IEEE Trans. Microwave Theory Tech.*, vol. 39, no. 6, pp. 910-916, June 1991.
- [3] D. S. Phatak, N. K. Das, and A. P. Defonzo, "Dispersion characteristics of optically excited coplanar striplines: Comprehensive full wave analysis," *IEEE Trans. Microwave Theory Tech.*, vol. 38, no. 11, pp. 1719-1730, Nov. 1990.
- [4] M. Riaziat, R. Majidi-Ahi, and I.-J. Feng, "Propagation and dispersion characteristics of coplanar waveguides," *IEEE Trans. Microwave Theory Tech.*, vol. 38, no. 3, pp. 245-251, Mar. 1990.
- [5] J. F. Whitaker, R. Sobolewski, D. R. Dykaar, T. Y. Hsiang, and G. A. Mourou, "Propagation model for ultrafast signals on superconducting dispersive lines," *IEEE Trans. Microwave Theory Tech.*, vol. 36, no. 2, pp. 227-285, Feb. 1988, and references therein.
- [6] D. R. Dykaar, R. Sobolewski, J. M. Chwalek, J. F. Whitaker, T. Y. Hsiang, G. A. Mourou, D. K. Lanthrop, S. E. Russek, and R. A. Buhrman, "High-frequency characterization of thin-film Y-Ba-Cu oxide superconducting transmission lines," *Appl. Phys. Lett.*, vol. 52, pp. 1444-1446, Apr. 1988.
- [7] M. C. Nuss, K. W. Goossen, P. M. Mankiewich, R. E. Howard, B. L. Straughn, T. E. Harvey, G. W. Berkstresser, and C. D. Brandle, "YBa₂Cu₃O₇ superconductors for high-speed interconnects," *IEEE Electron Dev. Lett.*, vol. 11, no. 5, pp. 200-202, May 1990.
- [8] R. N. Simonns, G. E. Ponchak, K. S. Martzaklis, and R. R. Romanofsky, "Channelized coplanar waveguide: Discontinuities, junctions, and propagation characteristics," *IEEE Int. Symp. Dig.*, 1989, pp. 915-918.
- [9] R. Majidi-Ahi, C. K. Nishimoto, M. Riaziat, M. Glen, S. Silverman, S. Weng, Y. Pao, G. A. Zdasiuk, S. G. Bandy, and Z. C. H. Tan, "5-100 GHz InP coplanar waveguide MMIC distributed amplifier," *IEEE Trans. Microwave Theory Tech.*, vol. 38, no. 12, pp. 1986-1992, Dec. 1990.
- [10] J. A. Valdmanis, "1-THz-bandwidth prober for high-speed devices and integrated circuits," *Electron. Lett.*, vol. 23, pp. 1308-1310, 1987, and references therein.